The 21st Century COE Program | ||
Center of Excellence for Research and Education on Complex Functional Mechanical Systems |
京都大学 工学研究科(機械工学専攻,機械物理工学専攻,精密工学専攻,航空宇宙工学専攻),情報学研究科(複雑系科学専攻)および国際融合創造センターは,平成15年度21世紀COEプログラムの機械工学分野における研究教育拠点に選ばれました.この活動の一環として,MEMS分野の学術・教育をより一層推進するためにミシガン大学,フライブルク大学と京都大学の3大学による学術交流協定を締結します.これを記念して下記の講演会を開催いたします.皆様のご参加をお待ち申し上げております.参加を希望される方は,下記の要領にて電子メールでお申し込み下さい.
日時: | 2004年10月13日(水) 13:00〜17:00 |
---|---|
場所: | 京都大学百周年時計台記念館 国際交流ホール(京都市左京区吉田本町) (吉田キャンパスへのアクセスについては下記 URL をご参照下さい) http://www-gs.kogaku.kyoto-u.ac.jp/access/access.htm |
参加費: | 無料 |
定員: | 250名(先着順) |
13:00〜13:10 | 開会の辞 |
---|---|
COE拠点サブリーダー 北村 隆行 (京都大学大学院工学研究科 機械物理工学専攻) | |
13:10〜13:25 | ミシガン大学−フライブルク大学−京都大学アライアンスの構想と展開 |
田畑 修(京都大学大学院工学研究科 機械工学専攻) | |
13:25〜13:55 | MEMS Education at the University of Michigan |
Yogesh Gianchandani(College of Engineering, University of Michigan) | |
13:55〜14:24 | Educating Microsystem Technologists |
Hans Zappe(IMTEK, University of Freiburg) | |
14:25〜14:55 | RF-MEMS;ミリ波用マイクロアンテナとスイッチング素子 |
小寺 秀俊(京都大学大学院工学研究科 機械工学専攻) | |
14:55〜15:15 | 休憩 |
15:15〜15:45 | Wireless integrated Microsystems (WIMS): Monitoring the Environment and Augmenting Biological Functions |
Khalil Najafi(College of Engineering, University of Michigan) | |
15:45〜16:30 | Novel silicon-based micro structures and micro sensors |
Oliver Paul(IMTEK, University of Freiburg) | |
16:30〜17:00 | Application of Nanotechnology in Microsystems |
Stella Pang(College of Engineering, University of Michigan) | |
17:00〜17:30 | マイクロ・ナノ材料の機械的信頼性評価 |
土屋 智由(京都大学大学院工学研究科 機械工学専攻) | |
17:30〜17:40 | 閉会の辞 |
COE拠点サブリーダー 椹木 哲夫 (京都大学大学院工学研究科 精密工学専攻) |
氏名,所属,役職,連絡先電話番号/FAX ,E-mailアドレスを記載の上,件名に「MEMS講演会」と記載したE-mailにて下記宛にお申し込み下さい.
田畑 修(京都大学大学院工学研究科 機械工学専攻)
京都大学におけるMEMS研究は桂キャンパス,インテックセンターを拠点としてナノテクノロジー,バイオ・ナノ融合,医工連携などをキーワードに新たな展開を始めた.京都大学のマイクロ工学分野における新たな展開の一環として,北米および欧州のMEMS研究の拠点であるミシガン大学,フライブルク大学と京都大学の3大学アライアンスをスタートする.本講演では,研究と教育の両面で期待されるアライアンスの狙いと今後の展開について紹介する.
Yogesh Gianchandani (College of Engineering, University of Michigan)
The University of Michigan has been committed for more than three decades to education and research in MEMS and microsystems. The recent establishment of the NSF Engineering Research Center in Wireless Integrated Microsystems has provided the impetus for a renewal of this commitment. A number of courses have been developed to provide the underpinnings not only of the traditional undergraduate and graduate-level degrees, but also a new degree intended to address the cross-disciplinary needs of this field. Offered under the Interdisciplinary Professional (InterPro) Program of the University of Michigan, College of Engineering, it accommodates students and industry professionals with a wide variety of backgrounds in engineering and basic sciences. (An important aspect of the degree is its requirement for a team project with industrial involvement.) A diversity of research projects that span across departmental boundaries and disciplines provide for a rich educational environment in microsystems. This talk will describe the educational environment that already exists, and anticipate how it can be further enhanced by the new alliances being formed across continents.
Hans Zappe (IMTEK, University of Freiburg)
Microsystems technology (MST) has become one of the premier enabling technologies of the 21st century, with mature industrial applications in a host of commercial areas. MST is interdisciplinary, interactive and international and these qualities, which go beyond mere technical competence, describe some of the essential traits required of workers in the field. Companies need such workers and it is the role of secondary educational institutions to furnish them.
But how do we educators best accomplish this? How can a program strictly limited in time provide students with the broad interdisciplinary technical knowledge required? How can the communication and presentation skills essential for the extensive inter-personal interaction which characterizes MST-related projects be developed? What aspects of the worldwide technology base and market can be included and how can global thinking be stimulated? How can intellectual and cultural flexibility be fostered? Are the offerings for continuing education sufficient? Are nationally-awarded degrees a barrier to movement in the crowded transnational technology market and workplace? These are some of the questions which MST educators are presently considering.
New approaches to address the interdisciplinarity, interactivity and internationality of the MST field are being considered and we will provide an overview of secondary educational programs in Europe relevant to MST. Using the program of IMTEK at the University of Freiburg as a case study, we will present some of the essential features of a curriculum which provides the MST industry with its invaluable human talent.
小寺 秀俊(京都大学大学院工学研究科 機械工学専攻)
高周波の電磁場・電磁波を扱うためのRF-MEMSデバイスとして、ミリ波用の指向性可変のアンテナ素子と高速のスイッチング素子の研究が注目されている.30GHz以上の電磁波は波長が1cm以下となるために、アンテナおよびスイッチング素子はミリメートルやマイクロメートルのオーダーになる.このような高周波の電磁波の場合,指向性が強く送受信のアンテナが向き合っている必要があるために移動体通信に向かないという問題がある.そこで,送受信用のアンテナの指向性を動的可変にできれば,ミリ波帯の電磁波の利用範囲を大幅に拡大することが可能になる.このような指向性動的可変なアンテナ素子およびそれに必要なスイッチング素子の研究成果について紹介する.
Khalil Najafi (College of Engineering, University of Michigan)
This talk will provide an overview of research activities in the University of Michigan's Engineering Research Center (ERC) for Wireless Integrated Microsystems (WIMS). This research is focused on miniature low-cost integrated microsystems capable of measuring a variety of physical parameters, interpreting them, and communicating over a bi-directional wireless link. During the next two decades, such systems will become pervasive in society. They will provide button-sized information-gathering nodes for measuring air and water quality, controlling adaptive process tools, improving transportation systems, and revolutionizing health care. Wireless integrated microsystems (WIMS) consist of a power source, an embedded microcontroller, a wireless interface, and front-end sensors/micro-instruments. They will pack the sophistication of several major laboratory instruments in the space of a wristwatch, dissipating less than 1 mW and communicating over distances from a few inches to a few miles. The Center's research program addresses the fundamental limits of microsystems along with the conflicting constraints imposed by power sources, process technology, circuit power-speed limits, wireless tradeoffs, and packaging. Two major applications testbeds are being developed. The first is a neural biomedical implant for applications such as auditory or visual prostheses. Hermetic packaging, biocompatibility, and size are major challenges here. The second testbed is an environmental monitoring system for barometric pressure, humidity, air and water quality. This system demands minimum power levels and sensing capabilities that do not yet exist. This talk will review each of these testbeds and discusses the challenges in sensor, circuit, wireless interface and packaging areas.
Oliver Paul (IMTEK, University of Freiburg)
Silicon based microsystem technology can proceed by either of two ways: compatible or incompatible with standard IC-technology. In the first approach, the full collection of silicon micromachining techniques can be unleashed on silicon substrates, producing structures with shapes, functionalities, and applications maybe never seen before. This option benefits of considerable technological freedom. In the second way, micromachining has to respect technological constraints imposed by standard technologies. However, fascinating CMOS-compatible microsensors can be realized even without micromachining, by exploiting transduction properties of the CMOS materials.
The author will illustrate both approaches by examples from his group´s recent research activities. Microneedles for dermatological applications and nanoneedle-based bioelectrodes demonstrate the power of anisotropic and isotropic silicon etching techniques combined with thin film processes in producing innovative structures for the life sciences. Stress sensor arrays based on field effect transistors will illustrate the CMOS-compatible way. A novel technique using octagonal sensors with eight peripheral contacts improves the resolution of piezoresistive stress sensors. The characterization of microelectronic wire bonding processes using sensor arrays with up to 6 by 6 stress-sensitive field effect transistors over an area of only 100 by 100 μm2 will be discussed.
The talk will be preceded by a presentation of the research and development activities at the Institute of Microsystem Technology IMTEK of the University of Freiburg in more general terms. The IMTEK, to which the authors´s group belongs, has grown to become one of the largest academic institutions in the field of microsystem technology. With a faculty of presently 15 chairs all dedicated to various aspects of microsystem technology, IMTEK´s coverage of the field is broad.
Stella Pang (College of Engineering, University of Michigan)
Nanoimprinting has been developed to generate channels, cavities, and 3-dimensional (3D) structures that can be applied to form microsystems. Using this technology, sealed channels, cavities, and 3D structures can be generated without sacrificial layers or bonding, significantly simplifying the processes and providing more flexibility. Applications of this unique nano-imprinting technology to form high aspect ratio channels for preconcentrator in a micro gas chromatography system and nanochannels in a micro DNA-protein interaction analysis system will be discussed.
土屋 智由(京都大学大学院工学研究科 機械工学専攻)
MEMSでは薄膜などマイクロ・ナノスケールの材料が構造材として用いられているためMEMSの設計,加工,評価において必要不可欠な情報として機械的物性値の評価方法が広く研究されている.特に実用化にあたっては強度や疲労などの信頼性評価が求められている.本講演ではMEMS用のマイクロ・ナノ材料の機械的信頼性評価についての現状と今後の課題,特に疲労評価や評価の標準化などについて紹介する.
京都大学大学院 | 工学研究科 | 機械工学専攻 | 機械物理工学専攻 | 精密工学専攻 | 航空宇宙工学専攻 |
情報学研究科 | 複雑系科学専攻 | ||||
京都大学 | 国際融合創造センター | ||||
拠点リーダー | 土屋和雄(工学研究科・航空宇宙工学専攻) | ||||
拠点事務局 | 林 紀夫 |