Mel Bacabac 博士 特別講演会

主催: 21世紀COEプログラム「動的機能機械システムの数理モデルと設計論―複雑系の科学による機械工学の新たな展開―」
共催:
  • 京都大学桂インテックセンターオープンラボプロジェクト「自己再生スマートマテリアルの機能解明と創製」
  • 日本機械学会バイオエンジニアリング部門生物機械システム研究会
日時: 2006年09月06日(水) 15:00〜16:30
場所: 京都大学 工学部物理系校舎 2階 211会議室
講演者: Dr. Mel Bacabac (Dept Oral Cell Biology, ACTA-Vrije Universiteit)
講演題目: Round versus flat: Bone cell morphology, elasticity, and mechanosensing
講演要旨: There is increasing evidence that cell function and mechanical properties are closely related to morphology. However, most in vitro studies investigate flat adherent cells, which might not reflect physiological geometries in vivo. Osteocytes, the mechanosensors in bone, reside within ellipsoid containment, while osteoblasts adhere to flatter bone surfaces. It is unknown whether morphology difference, dictated by the geometry of attachment is important for cell rheology and mechanosensing. We studied the rheology and mechanosensitivity of bone cells under different morphologies using atomic force microscopy and our two-particle assay for optical tweezers. We found that the elastic modulus of MLO-Y4 osteocytes when flat and adherent (& 1kPa) largely differed when round but partially adherent (< 1kPa). The elasticities of round suspended MLO-Y4 osteocytes, MC3T3-E1 osteoblasts, and primary osteoblasts were similarly < 1kPa. The mechanosensitivity of round suspended MLO-Y4 osteocytes was investigated by monitoring nitric oxide (NO) release, an essential signaling molecule in bone. These cells were stimulated by oscillatory undulations of the integrin-bound spheres upto 30pN force. Interestingly, the NO released increased in response to 5pN force stimulation, in contrast with flat cells, which required higher force stimulation while releasing lesser NO. Our results suggest that a round cellular morphology supports a less stiff cytoskeleton configuration compared with flat cellular morphology. This implies that osteocytes take advantage of their ellipsoid morphology in vivo to sense small strains benefiting bone health. Our assay provides novel opportunities for in vitro studies under a controlled suspended morphology versus commonly studied adherent morphologies.

京都大学大学院 工学研究科 機械理工学専攻 マイクロエンジニアリング専攻 航空宇宙工学専攻
情報学研究科 複雑系科学専攻
京都大学 国際融合創造センター
拠点リーダー 土屋和雄(工学研究科・航空宇宙工学専攻)
本拠点に関するお問合せは 拠点事務局 まで