Jaroslav Pokluda 教授 & Miroslav Cerny 博士 特別講演会

日時: 2006年06月16日(金) 10:30〜
場所: 京都大学 工学部物理系校舎 2階 211会議室
講演者: Prof. Jaroslav Pokluda & Dr. Miroslav Cerny (Faculty of Mechanical Engineering, Brno University of Technology)
講演題目: Influence of normal stress on ideal shear strength of metals
講演要旨:

The influence of stress applied perpendicularly to a slip plane during the shear deformation of a crystal on the ideal shear strength is important in many deformation processes. As an example, one can consider the nanoindentation process as a combination of shear and compressive deformations in the vicinity of the indentor. Previous studies [1] based on the empirical Lennard-Jones potential suggested nearly linear dependence of the theoretical shear strength on the normal tensile and compressive loadings. The aim of this study is to verify those results using ab initio approach.

Fig.1: The energy surface for <110>{111} shear.
Fig.1: The energy surface for <110>{111} shear.

Atomistic simulations of the shear deformation in fcc metals is performed using first principle method based on pseudo-potentials Vanderbilt ultrasoft pseudo-potentials [2] and plane wave basis set [3]. The fcc crystals are subjected to shear deformations in two common slip systems: <110>{111} and <112>{111}. The crystal energy is computed as a function of two independent parameters: the normalized interplanar distance (the plane distance divided by the equilibrium lattice parameter) and plane shift (see Fig.1). The latter quantity is scaled so that its values of 0 and (1/2)1/2 correspond to the cubic (fcc) state for <110> direction and, similarly, values of 0 and (3/2)1/2 correspond to the cubic state for <112> direction. The corresponding value of the normalized interplanar distance for the cubic state is (1/3)1/2. Such generalized energy surface allows us to evaluate both the shear and the normal stresses at any strain.

  • [1] A. Kelly, W.R. Tyson and A.H. Cottrell, Phil. Mag. 15, 135 (1967).
  • [2] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
  • [3] G. Kresse and J. Furthműller, Phys. Rev. B 54, 11169 (1996).

京都大学大学院 工学研究科 機械理工学専攻 マイクロエンジニアリング専攻 航空宇宙工学専攻
情報学研究科 複雑系科学専攻
京都大学 国際融合創造センター
拠点リーダー 土屋和雄(工学研究科・航空宇宙工学専攻)
本拠点に関するお問合せは 拠点事務局 まで